

CIrClE 2019

Challenges for the Islands in the era of the Circular Economy

CO₂ Capture and Mineralization: A novel circular economy enabling technology

George Skevis, Akrivi Asimakopoulou, Dimitris Koutsonikolas, Grigoris Pantoleontos

CPERI/CERTH

SMile 2019

6th Sustainable Mobility & Intelligent Transport conference

Transition to a CO₂ economy – CO₂ as an asset and not as a waste

Koutsonikolas et al., International Journal of Energy and Environmental Engineering, (2015) 1-8

Transition to a CO₂ economy – CO₂ as an asset and not as a waste

- Full circle recycling of CO₂ to (carbon-neutral) fuels and (carbon-negative) chemicals **and minerals** using renewable sources
- Technological options to overcome unfavourable thermodynamics

Energy changes in C_nH_n and CO₂ reactions

What is CO₂ Mineralization

- Carbonation technology is based on reacting CO₂ with calcium (Ca) or magnesium (Mg) oxide or silicate to form a solid carbonate mineral structure. These materials can be found either in **natural form** or in **waste streams**
- The mineralization of CO₂ is an alternative to conventional geological storage through the reaction with matrices containing **alkaline-earth** metals to form **carbonates**.
- CO₂ mineralization results in **permanent storage of CO₂ as a solid**, with no need for long term monitoring.
- Carbonation reaction can be accelerated by using high CO₂ concentrations and optimized reaction conditions. **The reaction is exothermic** (releases energy as heat).
- Carbonation processes do not need any significant input of renewable energy.

What is CO₂ Mineralization

Direct ex-situ carbonation involving natural sources (single-step reaction, slow kinetics)

Olivine:
$$Mg_2SiO_4 + 2CO_2 \rightarrow 2MgCO_3 + SiO_2 + 90 \text{ kJ/mol}$$

Serpentine:
$$Mg_3Si_2O_5(OH)_4 + 3CO_2 \rightarrow 3MgCO_3 + 2SiO_2 + 2H_2O + 64 \text{ kJ/mol}$$

Wollastonite :
$$CaSiO_3 + CO_2 \rightarrow CaCO_3 + SiO_2 + 90 \text{ kJ/mol}$$

 Direct carbonation is simple but limited (does not require additional chemicals, "small-scale storage"

What is CO₂ Mineralization

- Indirect mineral carbonation route takes place in more than two steps, including (i) extraction of Ca and/or Mg components and (ii) a precipitation reaction step between Ca/Mg and CO₂ in either gaseous or aqueous phases.
- Exploitation of industrial waste streams (e.g. steel slag contains up to 60% CaO with significant amounts of Mg and Si)
- High purity BUT use of additives (effect on efficiency/sustainability)

Slag2PCC: The world's first mineral carbonation pilot plant test facility that converts steel slag and CO₂ into precipitated calcium carbonate (PCC) utilizing ammonia salt solutions.

Why CO₂ Mineralization – Life Cycle Analysis

CCU technology	TRL	Current (2017)	Near term (5 years)	Long term (10 years)
		(kt CO ₂)	(kt CO₂)	(ktCO₂)
Horticulture	9	400-500	850-1,000	1,200
Carbonate mineralization	4-8	0	100-200	100-300
Polymer processing	8	-	12-23	30-45
Concrete curing	7-8	-	-	30
Synthetic methanol (including methane)	8	-	-	220
Methanol yield boosting	9	630	900	1,250
Rounded total		~400	~1,000	~1,700

Ecofys (2017) Assessing the Potential of CO2 Utilisation in the UK CE Delft (2018) Screening LCA for CCU routes connected to CO2 Smart Grid

The RECODE Project

www.recodeh2020.eu

Gas-liquid membrane contactors for post-combustion capture and utilization

Hydrophobic membranes Hydrophilic membranes (Polymeric membranes) (Ceramic membranes)

(2015), International Journal of Energy and Environmental Engineering, 1-8.

Koutsonikolas,

- An immobilized gas-liquid interface is created at the pores mouth where reaction takes place
- ➤ No dispersion of one phase in the other
- Very high and well defined surface areas can be obtained
- > This mode of operation can be used for direct CO₂ capture from the flue gases!
- Easy and modular scale up of the process

$CO_2 + 2NH_3 + CaCl_2 + H_2O \leftrightarrow CaCO_3 + 2NH_4Cl$

Nano-calcium carbonate precipitation

Nano-calcium carbonate for the cement industry

- Nano-calcium carbonate partially substitute cement in high-performance concrete.
- Addition of nano-CaCO₃ improves flowability and workability of concrete (lubricating effect of nanoparticles)

- Reduction in porosity and enhanced pore structure improves mechanical properties (compressive strength) of concrete
- Optimum mixing proportion of nano-CaCO₃ at ca. 3-5% (effect of particle size distribution?)

Camiletti, J. et al., (2013) Magazine of Concrete Research, 65:297-307

Conclusions

- CO₂ mineralization is a promising option for flexible and thermodynamically favourable ex-situ carbon utilization and storage.
- Novel membrane-based technology offers direct capture and mineralization in a compact unit.
- Carbonate production as an enabler of circular economy in energy-intensive industries (e.g. cement).

Thank you for your attention

gskevis@cperi.certh.gr

under the auspices of

Thursday 28 - Friday 29 March 2019, Nicosia, Cyprus

